Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38002563

RESUMO

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation (NIBS) technique that applies a weak current to the scalp to modulate neuronal excitability by stimulating the cerebral cortex. The technique can produce either somatic depolarization (anodal stimulation) or somatic hyperpolarization (cathodal stimulation), based on the polarity of the current used by noninvasively stimulating the cerebral cortex with a weak current from the scalp, making it a NIBS technique that can modulate neuronal excitability. Thus, tDCS has emerged as a hopeful clinical neuro-rehabilitation treatment strategy. This method has a broad range of potential uses in rehabilitation medicine for neurodegenerative diseases, including Parkinson's disease (PD). The present paper reviews the efficacy of tDCS over the front-polar area (FPA) in healthy subjects, as well as patients with PD, where tDCS is mainly applied to the primary motor cortex (M1 area). Multiple evidence lines indicate that the FPA plays a part in motor learning. Furthermore, recent studies have reported that tDCS applied over the FPA can improve motor functions in both healthy adults and PD patients. We argue that the application of tDCS to the FPA promotes motor skill learning through its effects on the M1 area and midbrain dopamine neurons. Additionally, we will review other unique outcomes of tDCS over the FPA, such as effects on persistence and motivation, and discuss their underlying neural mechanisms. These findings support the claim that the FPA could emerge as a new key brain region for tDCS in neuro-rehabilitation.

2.
Langmuir ; 35(49): 16335-16340, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31715104

RESUMO

Here, we report a method for facile gram-scale synthesis of tetrahedrite (Cu12Sb4S13) nanoparticles (NPs) with high quality and good reproducibility. The obtained NPs had a well-defined tetrahedral shape with a mean edge length of ∼70 nm. We sintered the NPs by the hot press technique to fabricate a nanostructured pellet for thermoelectric measurements. The figure of merit (ZT) value of the pellet was 0.52 at 675 K, which was comparable with the ZT value of the non-nanostructured counterpart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...